EC – IC BYPASS INDICATIONS AND TECHNIQUES

History of revascularization

Author (year)	Event
Kredel , 1942	EDAMS
Woringer & Kunlin, 1963	CCA-ICA bypass with saphenous vein graft
Donaghy & Yasargil, 1968	STA – MCA bypass
Loughheed 1971	CCA- IC ICA bypass
Kikuchini & Karasawa1973	EC-IC bypass for moyamoya
Karasawa , 1977	Encephalomyosynangiosis for moyamoya
Story , 1978	ICA-MCA bypass, saphenous vein graft
Sundt , 1982	Saphenous vein graft for posterior circulation
EC/IC bypass study group, 1985	No benefit of STA-MCA bypass in reducing ischemic events compared to best medical therapy
COSS ,2010	Study stopped for futility

Revascularization

• Indirect:

- Promote new capillary network formation
- Revascularization with time
- Flow augmentation , smaller volume of flow
- Recipient vessel size not important
- Ischemic brain unable to accommodate a higher flow

Direct

- Vessel to vessel anastamosis
- Immediate revascularization
- Flow augmentation/ replacement
- Recipient vessel size > 1mm (ideally > 1.5 mm)

Indirect revascularization

- EMS (encephalomyosynangiosis)
- EDAS (encephaloduroarteriosynangiosis)
- EDAMS (encephaloduroarteriomyosynangiosis)
- Omental graft
- Multiple burr holes

Direct revascularization

- STA
 - STA MCA anastamosis
- Arterial / venous graft
 - PETROUS ICA SUPRACLINOID ICA
 - CERVICAL ECA/ICA MCA
 - CERVICAL ECA/ICA SUPRACLINOID ICA
 - Bonnet graft (opposite STA Saphenous graft- MCA)

Revascularization

- Decision about direct/ indirect
- Decide on donor vessel
- Decide on conduit
- Decide on recipient
- Technique of anastamosis

Revascularization

Direct

- Immediate flow required (vessel sacrifice)
- The brain can handle the high flow rates
- Availability of acceptable recipient vessel

Indirect

- Immediate flow not required (3- 4 months to mature)
- Collaterals may not develop in 40 – 50 % adults
- Mass effect of muscle (aphasia)
- Revascularized area dependent on craniotomy size and site (only local revascularization)
- No acceptable recipient

Donor vessel

- STA (superficial temporal artery)
- MMA (middle meningeal artery)
- ECA (external carotid artery)
- ICA (internal carotid artery)
- OA (occipital artery)
- VA (vertebral artery V₃ segment)

Conduit

- Pedicled grafts
 - STA ≥ 1mm
 - OA
 - MMA
- Free arterial graft
 - Radial ≥ 2.4mm
 - Other arteries
- Free venous graft
 - $GSV \ge 3mm$

Flow characteristics of grafts

- Low resistance circulation, vein grafts not a disadvantage
- Low flow vessels
 - STA, OA, MMA
 - < 50ml/min flow at time of anastamosis
- High flow grafts
 - Radial artery
 - 50-150 ml/min at anastamosis
 - Saphenous vein graft
 - 100-250 ml/min at anastamosis

Vein Vs arterial graft

Arterial graft

- Better suited to high pressure flow
- Short term patency rates are better (98% at 6 W)
- Length is a limitation
- No valves
- Lumen approximates that of recipient
- May not always be available (incomplete palmar arch)
- Recipient ≥ 2 mm

Venous graft

- Larger diameter, higher flow rates
- Lower short term patency rates (93% at 6 W)
- Length is not a limitation
- Almost always available
- Valves present
- Lumen larger than recipient
- Higher procedure related complications
- Children < 12 years
- Recipient ≥ 2.5 mm
 Neurosurgery 69:308–314, 2011

Graft flow characteristics

High flow > 50 ml/min

- Proximal vessel sacrifice
- Flow replacement
- Large area to be revascularized

Low flow (< 50 ml/min)

- No vessel sacrifice
- Flow augmentation
- Small area to be revascularized
- Brain can not handle high flows

Recipient vessel

- M1 tolerates temporary occlusion poorly (lenticulostriate perforators)
- Implant into a bifurcation
- Implant into a 2.5 mm vessel MCA
- If M1 segment short, MCA unsuitable recipient, use supraclinoid ICA if aneurysm infraclinoid
- If supraclinoid ICA used as recipient collateral from ACA essential (temp PCA occlusion required)
- Suturing started at the heel end

Anastomotic technique

- Hand sewn (commonest)
 - Require proximal and distal clamping of the recipient
- Non occlusive anastamosis
 - Expensive, learning curve, larger recipient vessel size, patency rates comparable, similar complication rates
 - ELNA (Excimer Laser assisted Non occlusive Anastamosis)
 - C-Port xA Distal Anastomosis System

STA – MCA bypass

- STA
 - Parietal branch preferred (frontal has collaterals with ophthalmic)
 - Location of craniotomy
 - Junction of the anterior 2/3 and posterior 1/3 of a line joining lateral canthus to ipsilateral tragus
 - A line perpendicular to this
 - Craniotomy 3-5 cm in diameter 6 cm above this line
 - Anastomose to temporal M₄ branches
 - Avoid ischemia to frontal branches during occlusion
 - Good collaterals with PCA
 - More consistent good M4 branches

Radial artery harvest

- Radial artery graft
- Allen's test
- Expose at wrist between FCR and brachioradialis tendon
- Follow upwards between Pronator Teres and brachioradialis

GSV harvest

- Expose at ankle 1 cm anterior and cranial to medial malleolus
- Follow upwards to medial aspect of leg
- Harvest appropriate length
- Can also be harvested in the thigh (drains into CFV 3 cm below inguinal ligament)

Anastomosis

- Meticulous haemostasis (heparin administration)
- Distension of graft to prevent spasm
- Vein graft not reversed
- Intracranial anastomosis performed first
- Arterial graft retro/ preauricular route
- Venous graft retroauricular route
- Deliver graft without torsion

Hand sewn anastomosis

- •Fish mouthing of graft end before anastamosis
- Teardrop arteriotomy of recipient
- •Ensure no air in graft (back bleeding/ flushing)
- Verify flow through graft (Doppler/ angiography)
- •Bone flap placed without compromising graft

Indications for bypass

- Cerebral ischemia
- Moyamoya disease
- Aneurysms
- Skull base tumors

Bypass after major vessel sacrifice

- Selective approach: only if test occlusion is positive
 - 22% risk of TIA, infarcts
 - Neurosurgery 35:351–363, 1994.
 - TIA 10%, stroke rate of 5% and mortality of 5% after ICA occlusion following test occlusion
 - Neurosurgery 36:26–30, 1995
 - A high flow bypass if fails test occlusion, low flow if passes
 - Spetzler RF . Comments Neurosurgery 62[SHC Suppl 3]:SHC1373-SHC1410, 2008
- Universal approach: irrespective of test occlusion results
 - Neurosurgery 62[SHC Suppl 3]:SHC1373-SHC1410, 2008

Moyamoya disease

- Rationale for surgery
 - Augment blood flow
 - Improvement in CBF has been demonstrated
 - Reduction in further ischaemic events
 - Reduction in hemorrhagic events
- Indications for surgery
 - History of infarct/ haemorrhage
- Regions to be addressed
 - MCA territory : EDAS, EDAMS, STA MCA bypass
 - ACA territory: multiple burr holes, STA ACA bypass, vascularized dural flap

Moyamoya disease

- Indirect revascularization
 - EMS, EDAS, EDAMS, EDMAPS (Neurosurgery 66:1093-1101, 2010)
 - Encephalo galeo synangiosis
 - Multiple burr holes
 - Omental graft
- Direct revascularization
 - STA MCA bypass
 - STA ACA bypass (technically difficult, poor results)
 - A higher incidence of symptomatic hyperperfusion with direct revascularization as compared to atherosclerotic disease

Aneurysms

- Only level III evidence available
- Sacrifice of parent vessel or a major branch
- As a temporary measure during prolonged temporary clipping of complex aneurysm
- Aneurysms requiring bypass
 - Giant / blister aneurysms
 - Absence of a neck (fusiform or saccular-fusiform) aneurysms
 - Severe atherosclerosis or calcification in the neck
 - Extensive thrombosis
 - Critical branch origin from neck or sac
 - Symptomatic dissecting aneurysm
 - Blister aneurysm

Cranial base tumors

- Facilitates tumor removal with better patient outcome and tumor removal
- Allows surgeon to focus on cranial nerve preservation
- High morbidity and mortality
- Performed by few centers
- Being used less frequently (GKRS)

Cerebral ischemia

(occlusive cerebrovascular disease not amenable to carotid endarterectomy)

- EC IC bypass study 1985
- Not effective preventing ischemia
- Reduction in bypass
- Criticism
 - Only half of the patients received antiplatelet agents at entry into study
 - No evaluation preop for cerebrovascular hemodynamic status...
 - Both the patient and the therapist were not blinded
 - Randomization-to-treatment bias could have occurred
 - No angiographic determinants for entry.
 - A large percentage of patients had **no symptoms between** the angiographic **demonstration of ICA occlusion and randomization**.
 - large number of patients underwent surgery outside the study.
 - A high percentage of patients had tandem lesions

COSS study

- Inclusion criteria
 - Complete occlusion of an ICA
 - TIA or ischemic stroke in the hemispheric territory of an occluded internal carotid artery in the preceding 120 days
- Outcome measures
 - Surgery arm
 - Death or stroke 30 days from surgery
 - Ipsilateral stroke within 2 years
 - Medical arm
 - Death or stroke 30 days from randomization
 - Ipsilateral stroke within 2 years
- Results
 - Study stopped on 24 June 2010 for futility

Present status of revascularization

- Cerebral ischemia:
 - most RCT have shown no benefit
- Moyamoya disease:
 - only class III evidence of benefit
- Complex aneurysms :
 - class III data. Evidence of benefit
 - IC IC bypass, lower morbidity, comparable patency rates
- Skull base tumors:
 - class III evidence of benefit
 - alternative strategies for treatment of residual disease,