SURGICAL APPROACHES TO PINEAL REGION TUMORS
History

• Pinealis – pine cone
• Vedas – one of the 7 centers of vital energy
• Herophilus first described the pineal gland
• Descartes – seat of the human soul
• Studnicka 1905 – glandular function
• Lerner 1958 – melatonin discovered
• Derlincort 1717 – first pineal tumor
History of surgery of pineal tumors

• Horsley – 1910 first attempted resection
• Krause – 1913 first successful surgery
• Dandy – 1921 parieto occipital transcallosal approach
• Van Wagenen – 1931 transcortical transventricular approach
• Poppen – 1960 occipital transtentorial approach
• Stein – 1971 popularized infratentorial supracerebellar approach
Introduction

- Deep seated
- Difficult to access
- Diverse pathologies
- Surrounded by important structures
- The depth to the pineal region is the same from all approaches

“Personally, I have never succeeded in exposing pineal region tumor sufficiently well to justify an attempt to remove it “

Cushing (1932)

Pineal tumors are perhaps the most dangerous of all intracranial tumors to attack surgically.

—Walter E. Dandy
Arterial supply

• **P1**
 – Quadrigeminal artery
 – superior colliculus

• **P2**
 – Medial posterior choroidal artery
 – Pineal body, corpora quadrigemina, tela choroidea, thalamus
 – Lateral posterior choroidal artery
 – Choroid plexus lat ventricle, LGB, Thalamus

• **P3, P4**
 – Medial occipital artery
 – Calcarine artery – calcarine sulcus
 – Parieto-occipital artery – parieto-occipital sulcus
 – Posterior pericallosal artery

• **SCA**
 – Inferior colliculus
- **Pineal parenchymal tumor**
 - Pinealocytoma
 - Pinealoblastoma
 - Pineal parenchymal tumor of intermediate differentiation
 - Papillary tumor of pineal region

- **Germ cell tumors**
 - Germinoma
 - Non germinomatous germ cell tumor
 - Embryonal carcinoma
 - Yolk sac tumor (endodermal sinus tumor)
 - Choriocarcinoma
 - Teratoma (mature, immature, malignant)
 - Mixed germ cell tumor

- **Glial cell tumors**
 - Astrocytoma
 - Oligodendroglioma
 - Ependymoma
 - Choroid plexus papilloma
 - Anaplastic astrocytoma/GBM

- **Mesenchymal cell tumors**
 - Meningioma
 - Cavernoma/haemangioblastoma

- **Other tumors**
 - Epidermoid
 - Craniopharyngioma
 - Ganglioglioma
 - Lipoma

- **Metastasis**
- **Lymphoma**
- **Non neoplastic mass**
 - Pineal cyst
 - Arachnoid cyst
 - Cysticercosis
 - Tuberculoma
 - Sarcoidosis
 - Aneurysm of vein of Gallen
Pineal tumors WHO 2007

<table>
<thead>
<tr>
<th>GERM CELL TUMOURS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Germinoma</td>
<td>9064/3</td>
</tr>
<tr>
<td>Embryonal carcinoma</td>
<td>9070/3</td>
</tr>
<tr>
<td>Yolk sac tumour</td>
<td>9071/3</td>
</tr>
<tr>
<td>Choriocarcinoma</td>
<td>9100/3</td>
</tr>
<tr>
<td>Teratoma</td>
<td>9080/1</td>
</tr>
<tr>
<td>Mature</td>
<td>9080/0</td>
</tr>
<tr>
<td>Immature</td>
<td>9080/3</td>
</tr>
<tr>
<td>Teratoma with malignant transformation</td>
<td>9084/3</td>
</tr>
<tr>
<td>Mixed germ cell tumour</td>
<td>9085/3</td>
</tr>
</tbody>
</table>

grade I II III IV
Pineal mass with age

<table>
<thead>
<tr>
<th>Age group</th>
<th>Most common</th>
<th>Less common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants</td>
<td>Pinealoblastoma</td>
<td>Arachnoid cyst</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vein of Galen malformation</td>
</tr>
<tr>
<td>Childhood</td>
<td>Germinoma</td>
<td>Pinealoblastoma</td>
</tr>
<tr>
<td></td>
<td>Glioma</td>
<td>Pineal cyst</td>
</tr>
<tr>
<td></td>
<td>Tuberculoma</td>
<td></td>
</tr>
<tr>
<td>Young adults</td>
<td>NGGCT</td>
<td>Pinealocytoma</td>
</tr>
<tr>
<td></td>
<td>Glioma</td>
<td>Pineal cyst</td>
</tr>
<tr>
<td>Older adults</td>
<td>Pinealocytoma</td>
<td>Meningioma</td>
</tr>
<tr>
<td></td>
<td>Glioma</td>
<td>Epidermoid Metastasis</td>
</tr>
</tbody>
</table>
Presentation

- Hydrocephalus
- Brainstem compression
 - Parinaud’s syndrome
 - Downgaze palsy
 - Dorsal midbrain compression/ infiltration – Lid retraction/ ptosis
 - Rarely IV palsy
 - Inferior colliculus compression – hearing disturbance
- Cerebellar signs
 - Superior peduncle – ataxia, dysmetria
- Endocrine disturbance
 - Diabetes Insipidus
 - Precocious puberty: β-HCG secretion. In chorio ca./Germinoma with NSGCT – androgen secretion by Leydig cells
- Pineal apoplexy
 - In vascular tumors: Pineal cell tumors/Choriocarcinoma
Imaging

- **X ray**
 - Calcification below 10 years is abnormal

- **CE MRI**
 - Spine should be imaged in all
 - Size and extent
 - Relation to surrounding structures
 - MRV

- **CT**
 - Rarely required
 - Augments information from MRI
 - Calcification
 - BBB breakdown
 - Vascularity
Germ cell tumor

- CT - Hyperdense
 - Sharp borders
 - Intrinsic calcification
- T1 - Hypo
- T2 - Hypo
 - Uniform intense enhancement

Young
M>F
Choriocarcinoma - haemorrhage
Teratoma - calcification
Pinealoblastoma

Homogenous hyperintense on CT

Exploded (peripheral) calcification

Isointense on T1

Iso – hypointense on T2

Slightly non uniform enhancement

Areas of haemorrhage
<table>
<thead>
<tr>
<th>Tumor</th>
<th>CT</th>
<th>T1</th>
<th>T2</th>
<th>CMRI</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pineal cyst</td>
<td>Hypodense Rim calcification</td>
<td>Hypo</td>
<td>Hyper</td>
<td>Peripheral enhancement</td>
<td></td>
</tr>
<tr>
<td>Germ cell tumors</td>
<td>Hyperdense Sharp borders</td>
<td>Hypo</td>
<td>Hypo</td>
<td>Uniform intense enhancement</td>
<td>Young M>F Choriocarcinoma-Haemorrhage Teratoma - calcification</td>
</tr>
<tr>
<td>Pineal parrenchymal tumors</td>
<td>Hyperdense Blastoma- homogenous Cytoma non homogenous Exploded calcification</td>
<td>Iso- hypo</td>
<td>Blastoma – iso/ hypo Cytoma hyper</td>
<td>blastoma – slightly non uniform Cytoma – non uniform</td>
<td>Haemorrhage Non uniform borders</td>
</tr>
<tr>
<td>Papillary tumor of pineal region</td>
<td>Variable</td>
<td>Marked hyper</td>
<td></td>
<td></td>
<td>Cystic areas</td>
</tr>
<tr>
<td>Glioma</td>
<td>Hypodense Calcification rare</td>
<td>Iso/ hypo</td>
<td>hyper</td>
<td>Variable non homogenous</td>
<td>Adults</td>
</tr>
</tbody>
</table>
Imaging

– ANATOMICAL relationships
 • Involvement of 3rd ventricle/ position within 3rd ventricle
 • Superolateral extension into ventricular trigone
 • Location of deep venous system and its relation to the tumor
 • Supratentorial spread of lesion
Tumor markers

• Presence indicates malignant germ cell tumor, converse not true
• More significance in follow up/ recurrence
• Help avoid unnecessary surgery
Tumor markers

<table>
<thead>
<tr>
<th>Tumor</th>
<th>β-HCG</th>
<th>AFP</th>
<th>PLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germinoma</td>
<td>+(CSF)</td>
<td>-</td>
<td>+(CSF)</td>
</tr>
<tr>
<td>Chorionic carcinoma</td>
<td>++</td>
<td>-</td>
<td>+/-</td>
</tr>
<tr>
<td>Yolk sac tumor</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Embryonal Ca</td>
<td></td>
<td></td>
<td>variable</td>
</tr>
<tr>
<td>Mature teratoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Immature teratoma</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>Mixed GCT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CSF analysis

• Cytology for cells
• Tumor markers
 • Non secreting tumors – CSF level increased, not detectable in blood
 • Germinoma β HCG and PLAP only in CSF
Management

- Hydrocephalus
 - EVD
 - Shunt
 - ETV (+/- biopsy)

- Tissue diagnosis
 - ETV + biopsy
 - Stereotactic biopsy
 - Open surgery

- Tumor control
 - Radiotherapy
 - Surgery
Hydrocephalus

• Present in almost all cases
• Must be addressed prior to tumor surgery
• Stable patient, complete resection likely, temporary EVD at time of surgery
• Symptomatic raised ICP
 • ETV +/- biopsy
 » Gradual reduction of ICP
 » Avoids peritoneal seeding
 » Avoids shunt related complications
 • VP shunt
SURGICAL ANATOMY

• Most tumors arise from or attached to undersurface of velum interpositum
• Tumors rarely extend above velum
• Blood supply comes from within velum mainly from M P.ch & L P.ch with anastomoses to pericallosal & quadrigeminal artery
• Most tumors are centered at pineal gland, some extend to Foramen of Monroe
SURGICAL ANATOMY

• Mostly, ICV, Galen, Rosenthal & precentral cerebellar veins surround or cap the periphery of these tumors.

• Rarely, ICV are ventral to tumor.

• Highly vascular tumors
 – Pineoblastomas
 – Hemangioblastomas
 – Hemangiopericytomas (Angioplastic meningioma)
Surgery common approaches

- **Infratentorial supracerебellar**
 - Approach to centre of tumor
 - Minimizes risk to veins
 - Good exposure
 - No violation of normal tissue

- **Occipital transtentorial / Transcallosal interhemispheric**
 - Tumors extending superiorly
 - Extending laterally
 - Displaces veins ventrally
 - Large tumors
 - Greater exposure
Choice of approach

- Location of tumor (tentorial incisura)
- Tumor morphology (lateral extent)
- Displacement of great veins
- Probable diagnosis on imaging
- Angle of tentorium/ posterior fossa size
- Surgeons preference
Infratentorial supracerebellar approach

• Position
 • Sitting preferred
 – Can also be done in Concorde position
 • Large ventricle/ <3 years – 3 quarter prone
 • Table should be able to go low
 • Head flexed to keep tentorium parallel to floor
 • Patient tilted forward
Infratentorial supracerbellar approach

• Exposure
 • Incision – inion to C4, spinous process of C2 exposed
 • Burrhole – above torcular, lateral aspect of transverse sinus
 • Craniotomy – above transverse sinus and torcular
 • Bone edges waxed
 • If dura tense release CSF (ventricular tap)
 • Dural incision – curved between lateral most aspect of transverse sinus
 • Dura retracted avoid excess retraction – sinus occlusion
Infratentorial supracerebellar approach

• Surgical technique
 – Cauterize and divide adhesions and veins between cerebellum and tentorium
 – Retract vermis postero – inferiorly
 – Open arachnoid over the tumor (opaque white), midline precentral cerebellar vein may be divided
 – Small branches of choroidal and SCA over tumor divided
 – Trajectory of dissection changed towards the tumor
 – **Internal debulking of tumor**
 – **Lateral** walls dissected, vessels on it are choroidal and may be sacrificed
 – Dissection of **inferior** tumor from brainstem – most dangerous part, assistant retracts capsule upwards
 – Final dissection – **superior** along velum interpositum, great veins at risk
Infratentorial supracerebellar approach

• Mortality 3-4%

• Complications
 • Transient ocular dysfunction
 • Ataxia
 • Cognitive impairment, akinetic mutism – brainstem handling
 • Bleed in incompletely resected tumor
Infratentorial supracerebellar

Advantage
- Gravity aided drainage of blood/CSF
- Gravity aided cerebellar retraction
- Midline – orientation easy
- No neural structures en route

Disadvantage
- Air embolism
- Surgeon fatigue
- Difficult in very young and old
- Quadriplegia from excessive flexion in elderly
- Hypotension
Lateral paramedian infratentorial

• INDICATIONS
 • Biopsy
 • Small quadrigeminal area tumor

• ADVANTAGE
 • Minimal damage to neural tissues
 • Useful in steep tentorium
 • Reduced risk of air embolism (lateral position)

• DISADVANTAGES
 • Narrow space
 • Difficult to reach tumor portion extending to infero posterior part of 3rd ventricle
Lateral paramedian infratentorial

• POSITION
 – On the side: usually right side down
 – Upper part of trunk raised 30˚
 – Head flexed with neck stretched & rotated 45˚ face down

• SURGICAL TECHNIQUE
 – S-shaped incision behind mastoid
 – Oval craniectomy close to sigmoid sinus laterally & transverse sinus superiorly
 – Durotomy : cruciate
 – Bridging veins divided, petrosal & precentral cerebellar veins preserved.
 – Tentorial incisura reached, preserving SCA.
Occipital transtentorial approach

• Commonest supratentorial approach

• Indications
 – Predominantly supratentorial
 – Corpus callosum extension
 – Lateral extension into cerebral hemisphere
 – Thalamic extension
 – Predominantly third ventricular mass

• Advantage
 – Extensive tumor view
 – Managing bleeding is easier
 – Working distance is smaller
 – Access to pineal, third ventricle, midbrain, superior vermis

• Disadvantages
 – View obstructed by Galenic venous system
 – Restricted view of opposite side
Occipital transtentorial approach

• Position
 – Lateral decubitus with
 • rt side down
 • Midsagittal plane 30’ above horizontal
 – Three quarter prone
 – Prone
 – Sitting

• Craniotomy
 – Incision: U-shape
 – Craniotomy: 6 burr holes: 2 on left, 2 on right of sag. Sinus, 1 just rostral to trans. Sinus & 1 parietal.
 – Durotomy: T- shape & reflected along sinuses
 – Retractor on inferior surface of occipital lobe
Occipital transtentorial approach

• Surgical steps
 – Occipital retraction to be kept minimum
 – CSF release (from posterior callosal/ dorsal mesencephalic cisterns)
 – Opening of arachnoid (venous system lies in it)
 – Yasargil – positively identify vein of Rosenthal – Galen junction (Vein of Rosenthal may be mistaken for darkly colored dorsal mesencephalic cistern)
 – Tentorium incised 5 – 10 mm from the midline, medial flap sutured to falx
 – Identify and preserve IV nerve when manipulating tent
 – Precentral cerebellar vein may be sacrificed
Occipital transtentorial approach

- Cleavage plane found in small tumor
- Debulking in large tumor
- For hypervascular tumor: feeding arteries identified & coagulated prior to debulking.
- To avoid venous injury, total resection is not necessary & should not be attempted.
- Immaculate haemostasis, water-tight dura closure.
Transcallosal interhemispheric

• Indications
 • Predominantly supratentorial tumor

• Position
 • Sitting/prone preferred
 • Lateral / 3 quarter prone

• surgery
 – U shapes skin flap across the midline
 – Bone flap across the midline
 – Position of bone flap depending on centering of the tumor
 – Wide craniotomy for alternate corridors to avoid bridging veins
 – Avoid sacrifice of more than 1 bridging vein
 – Pericallosal retracted
 – Callosotomy <2 cm centered over the tumor bulge
 – Identify deep veins early
Transcortical transventricular

• Indication
 – Tumor extending into lateral ventricle

• Disadvantage
 • Limited exposure
 • Cortical incision required
 • Stereotactic guidance may be required
Complications of supratentorial approach

• Hemiparesis
 – Brain retraction
 – Sacrifice of bridging veins

• Sensory stereognostic deficits
 – Parietal lobe retraction injury

• Visual field defects
 – Occipital lobe retraction injury

• Disconnection syndrome
 – Corpus callosum section

• Memory defects
 – Fornix injury

• Bleed in residual tumor

• Venous infarction
Stereotactic biopsy

• Indications
 – Invasive disseminated tumor at diagnosis
 – Multiple medical problems
 – Selected cases with very large tumors
 – Neonate with large tumor (highly malignant, poor prognosis)
 – Presentation suggestive of infectious/ metastatic disease with diffuse systemic disease

• Target selection
 – Avidly enhancing tumor, preferably from the centre
 – Multiple sites
Trajectories

- **Orthogonal lateral (orange)**
 - Traverses the temporalis muscle
 - Technically difficult using a stereotactic frame

- **Oblique anterolateral (green)**
 - Most preferred
 - Low frontal trajectory below the plane of the internal cerebral veins

- **Posterolateral (pink)**
 - Lesions with significant lateral extension
Radiotherapy

• Primary
 – Germinoma

• Adjuvant
 – Pinealoblastoma (55 Gy to bed, 35 Gy to spinal axis)
 – Pinealocytoma (NO EFFECT on survival in incompletely excised tumors)
 – All malignant germ cell/ pineal cell neoplasm
 – CAN BE withheld for HISTOLOGICALLY benign COMPLETELY resected pinealocytoma, ependymoma
GKRS

- Histologically confirmed
- Maximum experience with pinealocytoma
- Used as an adjuvant therapy
- Possibly primary therapy for pinealocytoma
- Indications still evolving
- Current possible indications
 - Pineal par enchymal tumors
 - Germinoma
 - NGGCT
 - Astrocytoma
ADJUVANT THERAPY

• CHEMOTHERAPY
 – Indications
 • Non germinomatous malignant germ cell tumors
 • Germinoma with syncytiotrophoblastic giant cells
 • Recurrent /disseminated pineal cell tumors
 – Cisplatin/carboplatin + Etoposide
 – Others: vincristine/lomustine/cyclophosphamide
<table>
<thead>
<tr>
<th>Approach</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midline innfratentorial supracerebellar (Krause)</td>
<td>Midline – orientation Tumor below major veins Gravity assists retraction</td>
<td>Air embolism Narrow corridor Sacrifice of veins – infarction Difficult to reach above incisura</td>
<td>Midline masses No extension laterally/ above incisura Tumor < 3 cm</td>
</tr>
<tr>
<td>Lateral paramedian infratentorial (Van Wagenen)</td>
<td>No sacrifice of veins Possible with steep slope of tent Less air embolism</td>
<td>Only for small tumors SCA and branches at risk Cannot see posterior 3rd ventricle</td>
<td>Small tumors below tentorial notch with unilateral lateral extension</td>
</tr>
<tr>
<td>Occipital transtentorial (Poppen)</td>
<td>Good view of structures above and below the tent</td>
<td>Retraction damage to occipital lobe Damage to splenium Cannot see posterior third ventricle</td>
<td>Tumors extending above and below tentorial incisura Tumors with unilateral lateral extension</td>
</tr>
<tr>
<td>Posterior transcallosal (Dandy)</td>
<td>Lesion above tentorial notch with extension into 3rd ventricle</td>
<td>ICV in approach Callosotomy – disconnection syndrome Parietal lobe retraction damage</td>
<td>Posterior 3rd ventricular mass Mass between splenium and venous system</td>
</tr>
<tr>
<td>Approach</td>
<td>Advantage</td>
<td>Disadvantage</td>
<td>Indication</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Posterior transventricular (Van Wagenen)</td>
<td>Exposes atrium and posterior body of lateral ventricle</td>
<td>Fornix section – memory defecit Seizures</td>
<td>Tumor extending into posterior lateral ventricle</td>
</tr>
<tr>
<td>Anterior transcallosal, transventricular trans vellum interpositum (Sano)</td>
<td>Wider room No fornix section Supine – low air embolism</td>
<td>Increased depth of approach Callosotomy defecits Fornix damage by retraction</td>
<td>Large tumors extending anteriorly in 3rd ventricle</td>
</tr>
<tr>
<td>Combined supra – infratentorial trans sinus (Ziyal and Sekhar)</td>
<td>Access tumor above and below tent Amole room Sinus may be resutured</td>
<td>Division of transverse sinus – venous infarcts / delayed raised ICP</td>
<td>Large meningioma, epidermoid, teratoma</td>
</tr>
</tbody>
</table>
Results of Pineal Region Surgery at the New York Neurological Institute (1990-2008)

<table>
<thead>
<tr>
<th>Total Procedures</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign pathology</td>
<td>55 (43%)</td>
</tr>
<tr>
<td>Malignant pathology</td>
<td>73 (57%)</td>
</tr>
<tr>
<td>Diagnosis established</td>
<td>127 (99%)</td>
</tr>
</tbody>
</table>

Surgical Morbidity

Death (pulmonary embolism/cerebellar infarct)	2 (2%)
Permanent major morbidity	1 (1%)
Transient major morbidity (with recovery)	7 (5%)